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ABSTRACT Spatial modeling over broad scales can potentially direct conservation efforts to areas with high
species-specific abundances.We examined the performance of regional models for predicting bird abundance
at spatial scales typically addressed in conservation planning. Specifically, we used point count data on wood
thrush (Hylocichla mustelina) and blue-winged warbler (Vermivora cyanoptera) from 2 time periods (1995–
1998 and 2006–2007) to evaluate the ability of regional models derived via Bayesian hierarchical techniques
to predict bird abundance. We developed models for each species within Bird Conservation Region (BCR)
23 in the upper midwestern United States at 800-ha, 8,000-ha, and approximately 80,000-ha scales. We
obtained count data from the Breeding Bird Survey and land cover data from the National Land Cover
Dataset (1992). We evaluated predictions from the best models, as defined by an information-theoretic
criterion, using point count data collected within an ecological subregion of BCR 23 at 131 count stations in
the 1990s and again in 2006–2007. Competing (Deviance Information Criteria <5) blue-winged warbler
models accounted for 67% of the variability and suggested positive associations with forest edge
and proportion of forest at the 8,000-ha scale, and negative associations with forest patch area (800 ha)
and wetness (800 ha and 80,000 ha). The regional model performed best for blue-winged warbler predicted
abundances from point counts conducted in Iowa during 1995–1996 (rs ¼ 0.57; P ¼ 0.14), the survey period
that most closely aligned with the time period of data used for regional model construction. Wood thrush
models exhibited positive correlations with point count data for all survey areas and years combined
(rs ¼ 0.58, P � 0.001). In comparison, blue-winged warbler models performed worse as time increased
between the point count surveys and vintage of the model building data (rs ¼ 0.03, P ¼ 0.92 for Iowa
and rs ¼ 0.13, P ¼ 0.51 for all areas, 2006–2007), likely related to the ephemeral nature of their preferred
early successional habitat. Species abundance and sensitivity to changing habitat conditions seems to be an
important factor in determining the predictive ability of regional models. Hierarchical models can be a useful
tool for concentrating efforts at the scale of management units and should be one of many tools used by land
managers, but we caution that the utility of such models may decrease over time for species preferring
relatively ephemeral habitats if model inputs are not updated accordingly. � 2012 The Wildlife Society.

KEY WORDS Bayesian hierarchical model, blue-winged warbler, Breeding Bird Survey, driftless area, ecoregion,
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Availability and variety of geospatial environmental data
have increased dramatically in recent years. One outcome
has been proliferation of broad-scale predictive models with
much potential to inform avian conservation planning
(Forcey et al. 2007, Howell et al. 2008, Sauer et al.
2008a). Realizing this potential will require evaluation of
model predictions over multiple spatial and temporal scales.
Such evaluations are needed to determine appropriate uses

for model output, as well as their limitations, in a manage-
ment context.
One increasingly popular form of predictive modeling

involves the use of Bayesian hierarchical techniques.
Bayesian approaches are particularly suited to complex survey
designs typical of ecological studies, in part because of their
inherently hierarchical structure (Link et al. 2002, Ntzoufras
2009). Hierarchical models have been used to summarize
avian population change over multiple geographic scales
while accommodating various nuisance variables related to
survey quality and observer effects (Link et al. 2002). Using
Markov chain Monte Carlo methods, the prior distribution
is combined with the model likelihood via Bayes’ theorem to
form the posterior distribution of the model parameters
(Ntzoufras 2009). Through this process, the general
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Bayesian hierarchical trend approach of Link and Sauer
(2002) has been extended to accommodate the potential
effects of autocorrelation and environmental covariates for
producing spatially explicit predictions of avian occurrence
and abundance (Thogmartin et al. 2004b, 2006, 2007; Forcey
et al. 2007, 2008).
Using independent data in model evaluation is key in

determining their validity in providing the basis for conser-
vation decisions. In most evaluations of species–habitat dis-
tribution models, the models are assessed using presence–
absence data (e.g., Elith et al. 2006, Tsoar et al. 2007,
Jimenez-Valverde et al. 2008). Compared to abundance,
presence–absence data are less labor intensive and less prone
to observer bias and measurement error, but also potentially
less informative for species that are rare or have low detection
probabilities (Joseph et al. 2006).
We examined the ability of broad-scale hierarchical

Bayesian models to predict the relative abundance of bird
species in the upper Midwest using field data collected at
finer scales. We focused on the wood thrush (Hylocichla
mustelina), a mature forest-interior species, and the blue-
winged warbler (Vermivora cyanoptera), a shrub-forest species
associated with forest transition zones, both considered spe-
cies of conservation concern throughout much of their range
(Rich et al. 2004). Our objectives were: 1) develop models
from region-wide Breeding Bird Survey (BBS) data, 2)
evaluate model performance across multiple spatial scales,
and 3) evaluate these models using independent data from a
portion of the region.

STUDY AREA

The study area included portions of Minnesota, Iowa,
Wisconsin, Illinois, Indiana, and Michigan within the

Prairie–Hardwood Transition corresponding to North
American Bird Conservation Initiative Bird Conservation
Region 23 (Fig. 1, United States North American Bird
Conservation Initiative Committee [U.S. NABCI] 2000).
Most of this area was glaciated during the Pleistocene epoch
except for portions of southwestern Wisconsin (McNab and
Avers 1994, Johnson et al. 2002). Bird Conservation Region
23 (BCR 23) covered approximately 230,000 km2 and his-
torically contained hardwood forest, tall-grass prairie, and
oak (Quercus spp.) savanna (Nuzzo 1985, U.S. NABCI
2000). In 2006, BCR 23 primarily consisted of row crop
agriculture (36%), deciduous forest (21%), and grasslands
(27%, Thogmartin et al. 2006). Regional elevation ranged
between 175 m and 500 m with local relief not exceeding
200 m and mean annual temperatures ranged from 48 C to
118 Cwith annual precipitation of approximately 650 mm to
930 mm (McNab and Avers 1994).
We used data collected within a subregion of BCR 23 (i.e.,

Driftless Area; Fig. 2) to evaluate regional bird models. The
Driftless Area covered 42,000 km2 in northeastern Iowa,
southeastern Minnesota, southwestern Wisconsin, and a
small portion of northwest Illinois (Fig. 2), and was charac-
terized by highly dissected upland plateaus, abundant rock
outcroppings, and deeply cut valleys (Prior 1991,McNab and
Avers 1994). We chose this subregion based on readily
available data gathered in the context of a larger study
(LeBrun 2008).

METHODS

Regional Hierarchical Model
We used an existing hierarchical Bayesian model for
the wood thrush (Thogmartin and Knutson 2007) and

Figure 1. Breeding Bird Survey (BBS) routes (n ¼ 117; black lines) in Bird Conservation Region 23 (gray shaded area) and 50-km buffer of additional routes
(gray outlined area) included in the individual species regional Bayesian models, 1995–1998 and 2006–2007.
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developed a new model for the blue-winged warbler. Model
development essentially followed Thogmartin et al. (2004b)
and Thogmartin and Knutson (2007). Our hierarchical
Bayesian modeling approach used 1981–2001 count data
from the North American Breeding Bird Survey
(NABBS) and 1992 National Land Cover Data (NLCD)
for model construction.

We know of no comprehensive estimate of land cover
change for the Prairie–Hardwood Transition over the mod-
eled 20-year period. However, Fry et al. (2009) analyzed land
cover change in this region using the 1992 and 2001 NLCD
and found only minor shifts (<6%) among categories.
Therefore, we assumed that the midpoint of the 20-year
bird counts would correspond to the 1992 land cover data for
our models (Thogmartin et al. 2004a, Thogmartin and
Knutson 2007).
We used bird counts collected on 117 routes within BCR

23 for the response variable in the blue-winged warbler
models. Within these routes, we used 2,071 counts con-
ducted by 239 observers between 1981 and 2001. For the
wood thrush, Thogmartin and Knutson (2007) created mod-
els using 1,840 counts conducted on 140 routes by 310
observers, over this same 20-year time frame.
To identify relationships between environmental covariates

and avian abundance, we used a Bayesian hierarchical model
and iterative simulation (Markov chain Monte Carlo). We
modeled bird counts as an overdispersed Poisson regression
using a loglinear function of explanatory covariates
(Thogmartin et al. 2006, Thogmartin and Knutson 2007).
For each model, we iterated the Markov chain in the pro-
gram WinBUGS 1.4.3 (Spiegelhalter et al. 2003) an addi-
tional 10,000 iterations past convergence, which occurred at
15,000 iterations, to assure that the posterior distribution
was more heavily influenced by the data rather than by the
diffuse prior distribution (Link et al. 2002). To calculate the
Gelman–Rubin diagnostic, we ran 3 chains for each model
(Lunn et al. 2000, Link et al. 2002). The Gelman–Rubin
diagnostic identified whether the multiple chains converged
by comparing the within-chain variance to the between-
chain variance (Brooks and Gelman 1998).
We chose environmental covariates a priori for each model

based on a literature review (Table 1), and calculated vari-
ables at 3 logarithmically related scales: 800 ha, 8,000 ha,
and 80,000 ha (corresponding to buffers of 0.1 km, 1 km,
and 10 km around each BBS route; Thogmartin et al.
2004b). This range of scales theoretically corresponds to

Figure 2. Count stations in the Bird Conservation Region 23 (BCR 23)
Driftless Area of the upper-midwestern United States surveyed in the 1990s
and in 2006–2007 to evaluate wood thrush and blue-winged warbler regional
models.

Table 1. Environmental and nonhabitat covariates included in global models for the wood thrush (WOTH) and blue-winged warbler (BWWA) in 800 ha,
8,000 ha, and 80,000 ha surrounding bird survey routes in Bird Conservation Region 23 (Prairie–Hardwood Transition).

Class Variable Speciesa

Land cover composition Deciduous forest (%) WOTH, BWWA
Pine forest (%) WOTH
Wooded wetland (%) WOTH

Land cover configuration Forest patch area residuals (%) (residuals from a regression
of forest patch area against percent forest)

BWWA

Forest edge residuals (%) (residuals from a regression of forest edge
against percent forest)

BWWA

Physiognomic Mean static wetness index (scales between 1 [dry] to 19 [moist]) or ln
(catchment area/tangent of the slope angle)

WOTH, BWWA

Potential human disturbance Mean human density (mean county-level human population density) BWWA
Mean road density BWWA

Non-habitat Route effect (random effect) WOTH, BWWA
Year effect (random effect) WOTH, BWWA
Temporal trend effect (random effect) WOTH, BWWA
Observer effect (random effect) WOTH, BWWA
Novice observer effect (fixed effect) WOTH, BWWA

a Variables for the wood thrush were derived by Thogmartin and Knutson (2007).
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areas associated with ecological processes affecting breeding
bird habitat (Thogmartin et al. 2004b).
We derived land-cover variables from the 30-m resolution

1992 NLCD (Vogelmann et al. 2001). The 1992 NLCD is
most accurate for row cropland and deciduous forest (i.e.,
mapping accuracy >55%) and least accurate for rarer land
covers such as emergent herbaceous wetland and small grain
agriculture (i.e., mapping accuracy <38%; Stehman et al.
2003, Thogmartin et al. 2004a). Two of the environmental
variables, forest edge and forest patch area, were correlated
with percent forested area (r > 0.64). We therefore used
residuals from regressions of forest patch area and forest edge
against percent forest as model covariates (Legendre and
Legendre 1998, Lichstein et al. 2002).
In addition to environmental covariates, we examined 5

nonhabitat variables for each species: year, route, observer,
novice observer, and temporal trend effects (Table 1). The
year random effect accounted for temporal variation in bird
abundance, whereas the route random effect accounted for
spatial autocorrelation among the routes with a conditional
autoregressive prior on the route variance (Thogmartin et al.
2004b). We also included 2 observer effects: 1 accounting for
inexperienced first time observers (novice observer fixed
effect) and the other for differences in surveying abilities
among observers (observer random effect). Lastly, we
accounted for the remaining temporal variation not captured
by any of the other effects in the fixed temporal trend effect
(Thogmartin et al. 2004b).
We entered the 5 nonhabitat variables and the environ-

mental covariates (Table 1) into each proposed bird model,
and considered all combinations of covariates to derive the
best models from all 3 scales. We identified the best models
using an information-theoretic approach and the deviance
information criterion (DIC; Spiegelhalter et al. 2002) where
competing models were the set of models with the smallest
DIC values. The final models included only the best per-
forming models from all 3 scales (800 ha, 8,000 ha, approx.
80,000 ha) with a DDIC of <5 units from the best model
(Burnham and Anderson 2002).
We mapped predicted abundances from the final models at

each scale (800 ha, 8,000 ha, approx. 80,000 ha) with the
ArcGIS Spatial Analyst raster calculator (ArcGIS 9.2 and
9.3, Environmental Systems Research, Inc., Redlands, CA;
Thogmartin and Knutson 2007). We then averaged the 3
maps for each species using the model weights (Congdon
2007, Blakesley et al. 2010) to produce a final map of
predicted abundance. Predicted abundances were thus
mapped as the 20-year expected mean count for a putative
BBS route centered on a given raster cell (0.09 ha) and based
on variables measured in 800-ha, 8,000-ha, and 80,000-ha
focal areas, controlling for temporal and observer differences.
Mapping these predictions creates visual representations of
high-to-low predicted relative abundances, which land man-
agers can use to make management decisions.

Model Evaluation

We assessed the model fit by comparing simulated values
from the posterior predictive distribution of a replicated set

of data to the observed data. Because this is a within-model
assessment of fit and does not allow evaluation against
independent data, we used 4 sets of independently gathered
count data to evaluate model predictions. The first of these
included randomly chosen BBS data collected in BCR 23
during the period 1981–2001 but not used in model con-
struction (n ¼ 415 route counts). We regressed these ob-
served counts against the predicted blue-winged warbler
counts; model predictions for the wood thrush were previ-
ously evaluated for BCR 23 using a similar approach
(Thogmartin and Knutson 2007). We derived the other 3
evaluation data sets from point counts collected in the west-
ern half of the Driftless Area (Fig. 2).
Two of the Driftless Area data sets were collected at a

subset of count stations (n ¼ 131; Fig. 2) in 1995–1996 by
Norris (1999) and in 1997–1998 by Niemi et al. (1998) on
public and private lands. We resurveyed 58 stations in north-
eastern Iowa in 2006 and 2007, along with 73 stations in
southeastern Minnesota, using methods similar to those
employed in the earlier surveys (LeBrun 2008). We con-
ducted unlimited distance 10-minute counts (Howe et al.
1997) twice at each station between 30 May and mid-July,
commencing at sunrise, and continuing until 1000 hour.
Different individuals conducted the first and second survey
at each station in the same year. All stations were >250 m
apart and >50 m from the nearest forest edge. We only
included birds detected within 100 m of a count station in
statistical analyses (Howe et al. 1997).
To ameliorate temporal and spatial differences between

point count data and BBS data, we grouped count stations
for both data sets by centering 1.5-km buffers on each station
and designating those with overlapping buffers as a single
site. Temporal variation was reflected in the difference
between our 10-minute point counts, and the 3-minute
counts conducted 50 times along a BBS route. Spatially, a
point count covered an area around the point equivalent to
the listening radius associated with the species; each BBS
route was comprised of 50 of those counts. By aggregating
point counts to some larger collection of points, the differ-
ence in both space and time is lessened. We used 1.5 km
for our buffer because potential errors within the National
Land Cover Dataset may increase the variability in habitat
classifications at a scale smaller than 10 km2 (Thogmartin
et al. 2006). Sites (n ¼ 28) consisted of 2–9 point count
stations.
We used the maximum number of individuals detected on a

single survey, as the relative abundance for each focal species
at each station in each year (Barker and Sauer 1995, Johnson
2008, Murray et al. 2008). We then averaged these values
across stations at a site and across years to obtain a mean
observed abundance per site for each focal species in each of
the 3 sets of point count data. To quantify mean predicted
abundance for each site, we averaged the predictions for each
30-m � 30-m raster cell within a site. Because of differences
in the temporal and spatial scale of the observed and pre-
dicted abundances, we standardized both data sets by sub-
tracting the overall mean of each set and dividing by the
standard deviation (Murray et al. 2008). Thus, standardized
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abundances represented the number of standard deviations
from the mean of the respective data sets.
We conducted Spearman rank-correlation tests to measure

correspondence between relative observed and predicted
abundances for each species. Because different observers
collected the count data in each state, we conducted separate
analyses on each state individually and then using the pooled
data from Iowa and Minnesota in each of the 2 decades. To
assess the influence of outliers on our Spearman rank results,
we identified influential points using Cook’s Distance, re-
moved the most influential points, reanalyzed the data, and
plotted our results with and without outliers (PROC REG;
SAS Institute 2009).

RESULTS

We identified 6 environmental covariates that predicted
blue-winged warbler abundance, compared to 4 environmen-
tal covariates for the wood thrush (Table 1). Null models
(models including only nonhabitat covariates) for the blue-
winged warbler and the wood thrush had model weights of
<2% and 4%, respectively, indicating support for the inclu-
sion of environmental covariates within the best subset mod-
els. For the blue-winged warbler, 15 models were within the
best subset of models (<5 units DIC from the best model)
and therefore appropriate for varying degrees of inference

(Table 2). Thogmartin and Knutson (2007) identified 10
candidate models within their best subset for the wood
thrush.
We predicted that blue-winged warbler abundance would

be greatest in forests with high edge-to-patch ratios, high
road densities, and low human population densities (Gill
et al. 2001). Edge, patch area, and road densities were most
influential at intermediate scales, whereas human population
was included in only 1 competing model (Table 2). Blue-
winged warblers were positively associated with forest edge
and proportion of forest, both at the intermediate scale, but
negatively associated with forest patch area (at the finest
scale) and wetness (at both fine and coarse scales). Results
from model averaging indicated that blue-winged warblers
associated with areas of dry forest with a high proportion of
edge (Table 3). The best model explained 38% of the vari-
ance in counts despite the low predicted abundance for this
species (Fig. 3). Overall, the predicted relative abundance for
the blue-winged warbler was greatest in the eastern half of
the Driftless Area and in southern and eastern Michigan
while exhibiting an east to west gradient through the Prairie–
Hardwood Transition region (Fig. 4).
We observed the wood thrush more often than the blue-

winged warbler during both the BBS surveys and point
counts. Spearman rank correlation values between predicted

Table 2. Subset of models considered best fitted (i.e., <5 DICa from the best model) to the 1981–2001 Breeding Bird Survey counts (n ¼ 117) for the blue-
winged warbler in the Prairie–Hardwood Transition region of the United States. The null model includes observer, year, and spatial correlation without
environmental covariates.

Best subset model Explanatory variable Scale (ha) DIC DDICb wic

1 Forest, forest edge residuals, forest patch area residuals, wetness index 8,000 1,520.56 0.000 0.152
2 Forest, forest edge residuals, road density, wetness index 8,000 1,522.12 1.560 0.070
3 Forest, forest edge residuals, wetness index 8,000 1,522.42 1.860 0.060
4 Forest, wetness index 80,000 1,522.73 2.170 0.051
5 Forest 8,000 1,523.10 2.540 0.043
6 Forest, forest edge residuals 80,000 1,523.34 2.780 0.038
7 Forest, wetness index 8,000 1,523.39 2.830 0.037
8 Forest, forest edge residuals, wetness index 80,000 1,523.39 2.830 0.037
9 Forest, forest patch area residuals, wetness index 800 1,523.63 3.070 0.033
10 Forest, forest patch area residuals, road density, wetness index 800 1,523.66 3.100 0.032
11 Forest, forest edge residuals, forest patch area residuals, road density, wetness index 8,000 1,524.17 3.610 0.025
12 Forest, human population density 80,000 1,524.67 4.110 0.019
13 Wetness index 800 1,524.81 4.250 0.018
14 Forest 80,000 1,524.81 4.250 0.018
15 Forest, wetness index 800 1,524.86 4.300 0.018
16 Null 1,525.22 4.660 0.015

a Deviance Information Criterion.
b Difference between the best model and the model of interest.
c Model weight.

Table 3. Explanatory variables included in the final competing models for the blue-winged warbler in the Prairie–Hardwood Transition Region of the United
States. We report median (fiftieth percentile of the simulations) with lower (LCI) and upper (UCI) credible intervals.

Explanatory variables Model scale (ha) Median 95% LCI 95% UCI

Forest edge residuals (%) 8,000 0.7716 0.3569 1.2180
Forest patch area residuals (%) 800 �0.7549 �1.2510 �0.3187

8,000 �0.0590 �0.4731 0.3598
Forest (%) 800 0.3217 �0.1203 0.7686

8,000 0.8233 0.3939 1.2920
80,000 0.3620 �0.1271 0.8784

Mean static wetness index 800 �0.5550 �0.9987 �0.1210
8,000 �0.3323 �0.7437 0.0760
80,000 �0.5850 �1.0270 �0.1349
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BBS abundances and observed point count abundances were
positive, though the strength of the correlations varied over
time and space (Table 4). Overall, the wood thrush exhibited
greater Spearman rank correlations for the Iowa-only and the
combinedMinnesota and Iowa point count data, whereas the
blue-winged warbler’s greatest Spearman rank correlation
was for the Iowa-only point count data. Wood thrush cor-
relation was greatest for the point count data collected in
Iowa from 2006 to 2007 (Spearman correlation ¼ 71%);

combined data for the 2 time periods exhibited a
Spearman rank correlation of 58% (Table 4; Fig. 5C, D).
Spearman rank correlations for the blue-winged warbler
were not significant; correlation was greatest for the point
count data collected in Iowa from 1995 to 1996 (57%), 27%
for the combined early, and 13% for the combined late
periods (Table 4; Fig. 5A, B).
When assessing the effect of outliers on our Spearman-rank

results, we found varying degrees of influence on predicted
versus observed correlations for the 2 species. After removing
outliers for the blue-winged warbler, Spearman rank corre-
lation increased from 27% to 36% for the early Iowa period
(Fig. 5A); however, these results were not significant and
were highly variable. Generally, we found little change when
we removed outliers for the wood thrush. Plots of the
predicted BBS versus observed point count abundance for
the blue-winged warbler exhibited evidence of both under-
and over-prediction (Fig. 6C, D). In comparison, the wood
thrush plots exhibited primarily over-predictions for the
Minnesota data (Fig. 7C, D).

DISCUSSION

In general, we found the wood thrush regional models to be
better predictors of regional abundance across the Prairie–
Hardwood Transition (BCR 23) than the models created for
the blue-winged warbler. Our models for the blue-winged
warbler support research-indicating associations with

Figure 3. Regression of observed Breeding Bird Survey counts (n ¼ 415),
withheld during the construction of the blue-winged warbler hierarchical
model in Bird Conservation Region 23 during 1981–2001, on predicted
counts. The dashed, gray line is the line of 1:1 correspondence and the solid
black line represents the trend line.

Figure 4. Predicted relative abundance of the blue-winged warbler in Bird Conservation Region 23. Relative abundance corresponds to the 20-year expected
mean count during the period of 1981–2001.
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successional habitat (Confer and Knapp 1981, Gill et al.
2001). The predicted abundance for the blue-winged warbler
primarily had positive associations for forest cover and edge
at the intermediate scales and negative associations for lower
elevation and wetter areas at fine and broad scales. In contrast
to predicted abundance of the blue-winged warbler,
Thogmartin and Knutson (2007) found that wood thrush
had a weak positive association with wooded wetlands at
intermediate and coarse scales and exhibited a positive asso-
ciation with the proportion of the landscape in deciduous
forest at all scales, similar to habitat associations reported
elsewhere (Roth et al. 1996, Donovan and Flather 2002).
Within the Prairie–Hardwood Transition region, blue-
winged warbler models suggested avoidance of low elevation

wetter areas. However, published research suggests this pat-
tern varies across the eastern United States with paired males
more likely to occur in dry, higher elevations (Gill et al.
2001). Similar to our findings, Thogmartin and Knutson’s
(2007) wood thrush models also indicated a mixed response
for the wetness index. Overall, blue-winged warblers were
most abundant in dry upland forests with a high ratio of
forest edge, whereas wood thrush were more abundant in
forested landscapes with large patches that were in close
proximity to one another (Thogmartin and Knutson 2007).
In evaluating our models using data collected from a por-

tion of the Prairie–Hardwood Transition region, we found
positive relationships between model predictions and point
count data for both focal species. The rank correlations

Table 4. Results of Spearman rank correlation tests (rs) comparing predicted (derived from 1981–2001 Breeding Bird Survey data) and observed (collected at
point count stations in 2006–2007) abundances for the blue-winged warbler and wood thrush in the Driftless Area of the midwestern United States.

Species dataa No. of sitesb rs
c P

Blue-winged warbler
IA 1995–1996 8 0.57 0.14
IA 1995–1996 and MN 1997–1998 23 (21) 0.27 (0.36) 0.21
MN 2007 15 0.24 0.39
MN 1997–1998 15 0.20 0.48
IA 2006–2007 and MN 2007 28 0.13 0.51
IA 2006–2007 13 0.03 0.92

Wood thrush
IA 2006–2007 13 0.71 0.0068
IA 1995–1996 and MN 1997–1998 23 0.58 0.0035
IA 2006–2007 and MN 2007 28 0.58 0.0012
IA 1995–1996 8 0.20 0.63
MN 1997–1998 15 0.08 0.77
MN 2007 15 0.08 0.78

a IA, Iowa; MN, Minnesota.
b Parentheses indicate the number of sites when outliers are removed.
c Parentheses indicate results with outliers removed.

Figure 5. Observed abundances of the blue-winged warbler and the wood thrush based on survey data collected inMinnesota and Iowa fitted against predicted
relative abundances from models of Breeding Bird Survey data. Panels represent observed versus predicted for (A) blue-winged warbler 1990s data, (B) blue-
winged warbler 2000s data, (C) wood thrush 1990s data, and (D) wood thrush 2000s data.
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indicated that our models produced reasonable predictions of
count data over extended time frames for the wood thrush,
but not for the blue-winged warbler, at spatial scales of
800 ha, 8,000 ha, and 80,000 ha. Consistency among model
predictions tended to increase for the wood thrush with
repeated surveys and wider coverage. In contrast, the blue-

winged warbler exhibited slight increases in model consis-
tency using the combined 1990s data for Minnesota and
Iowa.
One possible reason for the lack of consistency in the blue-

winged warbler predictions is the potential interaction with
the brown-headed cowbird (Molothrus ater). Blue-winged

Figure 6. Observed abundances of independent data collected for the blue-winged warbler fitted against predicted relative abundances frommodels of Breeding
Bird Survey data for Bird Conservation Region 23. Panels represent observed versus predicted for (A) Iowa 1995–1996 data, (B) Iowa 2006–2007 data, (C)
Minnesota 1997–1998 data, and (D) Minnesota 2007 data.

Figure 7. Observed abundances of independent data collected for the wood thrush fitted against predicted relative abundances from models of Breeding Bird
Survey data for Bird Conservation Region 23. Panels represent observed versus predicted for (A) Iowa 1995–1996 data, (B) Iowa 2006–2007 data, (C)
Minnesota 1997–1998 data, and (D) Minnesota 2007 data.
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warblers are commonly parasitized by cowbirds in heavily
fragmented habitats (Gill et al. 2001). Research conducted
by Elliott (1999) revealed not only cowbird nest parasitism,
but also cowbird infanticide of blue-winged warbler nest-
lings. At the regional scale, brown-headed cowbirds have
declined in abundance (Sauer et al. 2008a). In the Driftless
Area, however, brown-headed cowbird populations have
been largely stable or increasing in abundance over the
last decade (W. Thogmartin, United States Geological
Survey, unpublished data). Our results may be an indication
that the dynamic relationship between these species affects
abundance at local scales in at least some parts of the region.
We believe that another key contributor to model discrep-

ancies for blue-winged warbler predictions resulted from
relatively low abundance in the Minnesota and Iowa sections
of the Driftless Area (Keller and Scallan 1999, Lawler and
O’Connor 2004). The western half of the Driftless Area is on
the edge of the blue-winged warbler’s breeding range. In
contrast, the range of the wood thrush extends well past the
Driftless Area to the Missouri River (Roth et al. 1996, Sauer
et al. 2008b). Several studies have found that detection of rare
species increased with additional counts (Link et al. 1994,
Vaughan and Ormerod 2005). Our blue-winged warbler
models may have performed better if we evaluated them
with additional counts across the extent of its range
(Vaughan and Ormerod 2005, Murray et al. 2008).
The greatest difficulty in using avian point counts for

evaluating the performance of regional models and maps
derives from spatial and temporal differences between the
data used for model construction and the independent data
used to test model performance. We compared the spatial
resolution of 10-minute point counts to 150-minute route
counts (3-min counts at 50 stops on a BBS route), and the
temporal resolution of point counts conducted over 2 years
versus a 20-year mean abundance. Both of these differences
in data resolution make comparisons difficult. To deal
with these spatial and temporal differences in data resolution
others have suggested increasing the number of point
counts (Vaughan and Ormerod 2005), or increase the
number of survey replicates (Dettmers et al. 1999, Murray
et al. 2008). Doing this may not only have decreased
the differences in our data resolution, but also may have
likely increased the predictive ability of the models (Murray
et al. 2008).
Another factor affecting model assessment involves trade-

offs between environmental features measured at broad scales
that parameterize the models and fine-scale resources that
characterize habitat (Miller et al. 2004, Miller and Hobbs
2007, Gallant 2009). For example, LeBrun (2008) quantified
fine-scale blue-winged warbler habitat features that could
not be detected through remote sensing and included these
in models of habitat suitability, improving their predictive
ability. Such habitat features were not represented in our
regional-scale models and this could be problematic for a
species that occurs in ephemeral habitat, such as the blue-
winged warbler. Conversely, models for a species occurring
in mature forests, such as the wood thrush, may not be as
sensitive to fine-scale changes that influence habitat use.

Temporal rather than spatial dissonance likely affects mod-
el performance in other ways. We used land cover data dated
from 1992 to create the models and maps, and then tested
them with count data collected as much as 15 years later. In a
comparison of unpublished digitized forest cover data from a
study by LeBrun (2008), forest cover had not significantly
changed (P ¼ 0.33) between the early 1990s and mid 2000s
within the Driftless Area of Iowa. However, successional
changes likely occurred in the interim. For instance, LeBrun
(2008) documented a decline in oaks and a decrease in
canopy openings over this period. The wood thrush is known
to be associated with mature deciduous forest, whereas the
blue-winged warbler is more commonly found in early suc-
cessional, shrubby areas along forest edges (Gill et al. 2001).
Loss of transitional habitat along edges due to an increase in
agricultural intensity or successional changes may be influ-
encing model performance for the blue-winged warbler more
than the wood thrush. This may suggest that species whose
habitat is more varied or under greater rates of change may
need updating of model inputs (i.e., land cover) more
frequently.
A final caveat is that we only tested model performance in

an area approximately an eighth of the entire model region.
Testing only a portion of the area modeled may result in
missing variation occurring over broader scales to which the
model is attuned (Royle and Nichols 2003, Vaughan and
Ormerod 2003, Barry and Elith 2006, Franklin et al. 2009).
However, understanding the degree to which these regional
models scale to finer resolutions is important for constraining
management recommendations resulting from regional exer-
cises in conservation planning.

MANAGEMENT IMPLICATIONS

Considerable effort is occurring in the development of re-
gional models and maps for conservation planning
(Thogmartin et al. 2004b, 2006, 2007; Chan et al. 2006;
National Ecological Assessment Team 2006; Forcey et al.
2007, 2008). We found that models from broad-scale avian
surveys are not necessarily well suited for assessment by avian
point counts collected over a small spatial and time-limited
extent. We also surmise that species abundance and species
sensitivity to changing habitat conditions might be influen-
tial factors affecting the predictive ability of regional models.
Therefore, managers should consider the ecology of a species
sensitive to relatively rapid changes in habitat conditions and
update model inputs (i.e., land cover) accordingly. We sug-
gest that predictive models should be one of many tools land
managers use to inform conservation actions. When using
these predictive models, we recommend that managers
be cognizant of the species ecological requirements and
especially cautious when planning conservation actions for
rare species to guard against the expiration of mapped
predictions.
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